A Salinity-Induced C3-CAM Transition Increases Energy Conservation in the Halophyte Mesembryanthemum crystallinum L.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.

C3 or crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants perform nocturnal starch degradation which is linear with time. To analyse the composition of metabolites released by isolated leaf chloroplasts during starch degradation we developed a protocol for the purification of starch-containing plastids. Isolated chloroplasts from C3 or CAM-induced M. crystallinum pla...

متن کامل

RNA-Seq Analysis of the Response of the Halophyte, Mesembryanthemum crystallinum (Ice Plant) to High Salinity

Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. ...

متن کامل

A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum.

Molecular mechanisms of osmotic stress tolerance were studied in Mesembryanthemum crystallinum (ice plant), a facultative halophyte capable of adjusting to and surviving in highly saline conditions. We screened a subtracted cDNA library enriched for salt stress-induced mRNAs to identify transcripts involved in this plant's adaptation to salinity. One mRNA, Imt1, was found to be up-regulated in ...

متن کامل

Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism.

Different organs of Mesembryanthemum crystallinum exhibit differing levels of CAM (Crassulacean acid metabolism), identifiable by quantification of nocturnal malate accumulation. Shoots and also basal parts of young leaves were observed to accumulate high concentrations of malate. It was typically found in mature leaves and especially prominent in plants subjected to salt stress. Small amount o...

متن کامل

Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM.

The halophyte Mesembryanthemum crystallinum adapts to salt stress by salt uptake and switching from C3 photosynthesis to CAM (crassulacean acid metabolism). An important role in this process is played by transport proteins in the tonoplast of the central vacuole. In the present study we examine dynamic changes in the protein composition during salt-stress adaptation in microsomes from M. crysta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Plant and Cell Physiology

سال: 2004

ISSN: 1471-9053,0032-0781

DOI: 10.1093/pcp/pch079